Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Semiconductor Bridgman growth inside inertial flight mode orbiting systems of low orbital eccentricity and long orbital period

Identifieur interne : 000449 ( Russie/Analysis ); précédent : 000448; suivant : 000450

Semiconductor Bridgman growth inside inertial flight mode orbiting systems of low orbital eccentricity and long orbital period

Auteurs : RBID : Pascal:05-0098513

Descripteurs français

English descriptors

Abstract

The present work numerically investigates the influence of a generic inertial flight mode orbiting system of low eccentricity and long orbital period on the final solid dopant distribution of a set of semiconductor crystals virtually grown by the Bridgman method. For the lowest 1 μg level it has been noted that, depending on the semiconductor, some disturbances could arise. For higher μg levels spot-like alternate dopant structures with a frequency equal to the orbital one have been computationally predicted in the solid phase. At higher levels, these structures spread trying to attain the opposite side of the crystal breaking any kind of symmetry. All these results are independent on the length of the sample and on the external thermal environment. Thus, to improve crystal homogeneity inside long period inertial flight mode spatial platforms some corrective strategies are strongly recommended.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:05-0098513

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Semiconductor Bridgman growth inside inertial flight mode orbiting systems of low orbital eccentricity and long orbital period</title>
<author>
<name sortKey="Ruiz, X" uniqKey="Ruiz X">X. Ruiz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Applied Physics Laboratory, Universitat Rovira i Virgili</s1>
<s2>Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<wicri:noRegion>Tarragona</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ermakov, M" uniqKey="Ermakov M">M. Ermakov</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute for Problems in Mechanics, RAS</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">05-0098513</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 05-0098513 INIST</idno>
<idno type="RBID">Pascal:05-0098513</idno>
<idno type="wicri:Area/Main/Corpus">00A761</idno>
<idno type="wicri:Area/Main/Repository">00AD18</idno>
<idno type="wicri:Area/Russie/Extraction">000449</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Bridgman method</term>
<term>Cadmium tellurides</term>
<term>Crystal growth from melts</term>
<term>Digital simulation</term>
<term>Doping</term>
<term>Eccentricity</term>
<term>Flight testing</term>
<term>Gallium antimonides</term>
<term>Germanium</term>
<term>Growth mechanism</term>
<term>Homogeneity</term>
<term>Indium phosphides</term>
<term>Inertia</term>
<term>Segregation</term>
<term>Semiconductor materials</term>
<term>Symmetry breaking</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude théorique</term>
<term>Croissance cristalline en phase fondue</term>
<term>Méthode Bridgman</term>
<term>Essai en vol</term>
<term>Inertie</term>
<term>Excentricité</term>
<term>Dopage</term>
<term>Brisure symétrie</term>
<term>Homogénéité</term>
<term>Mécanisme croissance</term>
<term>Ségrégation</term>
<term>Simulation numérique</term>
<term>Semiconducteur</term>
<term>Germanium</term>
<term>Gallium antimoniure</term>
<term>Cadmium tellurure</term>
<term>Indium phosphure</term>
<term>Composé binaire</term>
<term>Ge</term>
<term>GaAs</term>
<term>As Ga</term>
<term>CdTe</term>
<term>8110F</term>
<term>8110A</term>
<term>Cd Te</term>
<term>InP</term>
<term>In P</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The present work numerically investigates the influence of a generic inertial flight mode orbiting system of low eccentricity and long orbital period on the final solid dopant distribution of a set of semiconductor crystals virtually grown by the Bridgman method. For the lowest 1 μg level it has been noted that, depending on the semiconductor, some disturbances could arise. For higher μg levels spot-like alternate dopant structures with a frequency equal to the orbital one have been computationally predicted in the solid phase. At higher levels, these structures spread trying to attain the opposite side of the crystal breaking any kind of symmetry. All these results are independent on the length of the sample and on the external thermal environment. Thus, to improve crystal homogeneity inside long period inertial flight mode spatial platforms some corrective strategies are strongly recommended.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>273</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Semiconductor Bridgman growth inside inertial flight mode orbiting systems of low orbital eccentricity and long orbital period</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RUIZ (X.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ERMAKOV (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Applied Physics Laboratory, Universitat Rovira i Virgili</s1>
<s2>Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute for Problems in Mechanics, RAS</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1-18</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000122827200010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0098513</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The present work numerically investigates the influence of a generic inertial flight mode orbiting system of low eccentricity and long orbital period on the final solid dopant distribution of a set of semiconductor crystals virtually grown by the Bridgman method. For the lowest 1 μg level it has been noted that, depending on the semiconductor, some disturbances could arise. For higher μg levels spot-like alternate dopant structures with a frequency equal to the orbital one have been computationally predicted in the solid phase. At higher levels, these structures spread trying to attain the opposite side of the crystal breaking any kind of symmetry. All these results are independent on the length of the sample and on the external thermal environment. Thus, to improve crystal homogeneity inside long period inertial flight mode spatial platforms some corrective strategies are strongly recommended.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A10F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A10A</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Croissance cristalline en phase fondue</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Crystal growth from melts</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Méthode Bridgman</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Bridgman method</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Essai en vol</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Flight testing</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Inertie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Inertia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Inercia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Excentricité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Eccentricity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Doping</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Doping</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Brisure symétrie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Symmetry breaking</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Homogénéité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Homogeneity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Ségrégation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Segregation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gallium antimoniure</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium antimonides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Cadmium tellurure</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Cadmium tellurides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Indium phosphure</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Indium phosphides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Ge</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>CdTe</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8110F</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8110A</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Cd Te</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>94</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fC07 i1="02" i2="3" l="FRE">
<s0>Métal transition composé</s0>
<s5>49</s5>
</fC07>
<fC07 i1="02" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>49</s5>
</fC07>
<fN21>
<s1>066</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000449 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000449 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:05-0098513
   |texte=   Semiconductor Bridgman growth inside inertial flight mode orbiting systems of low orbital eccentricity and long orbital period
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024